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Abstract

A brief survey is presented of the author’s results obtained from studies of the chemical micro-mechanisms of nitramines initiation from the
point of view of organic chemistry. The relationships have been presented and discussed between the characteristics of impact and electric spark
sensitivities, detonation and thermal decomposition, on the one hand, and 15N NMR chemical shifts of nitrogen atoms of nitramino groups, on
the other. In the case of the impact sensitivity, the said relationships involve the 15N shifts of the amino nitrogen atoms carrying the nitro group
primarily split off from the molecule. In the case of the initiation by shock, heat and electric spark, the 15N shifts of nitrogen atoms in the primarily
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plit off nitro groups themselves are involved. Also, the relationships are presented between the characteristics of thermal reactivity and values
f the electronic charges at the nitro groups that are primarily split off. It has been stated that the chemical micro-mechanisms of primary fission
rocesses of molecules of nitramines in the initiation by mechanical stimuli (inclusive the detonation course) and electric spark should be the same
s in the case of their low-temperature thermal decomposition. It has been found that the electron structure and close neighbourhood of nitrogen
tom of the primarily leaving nitro group is a dominant factor in initiation by shock, electric spark and heat. In the case of initiation by impact a
ey role plays characteristics of amino nitrogen atoms which are carriers of these most reactive nitro groups. Also mentioned is relevance of the
odified Evans–Polanyi–Semenov relationship. On the basis of the findings presented it also has been stated that the detonation transformation

tself of the nitramines should be preceded by an induction period.
2005 Elsevier B.V. All rights reserved.
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. Introduction

At present, it is a generally accepted idea that nitro groups
epresent the primary cause of initiation reactivity of polyni-
ro compounds. A number of papers, inclusive of some striking
ieces of experimental evidence, deal with relationships between
he chemism of homolytic fragmentation of these compounds in
he initiation processes and the chemism of low-temperature
hermal decomposition (see Introduction in Ref. [1] and ref-
rences herein). However, the approaches to study of micro-
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mechanism of initiation of these compounds are dominated by
opinions of physicists (e.g. Refs. [2–7]). If the problems of ini-
tiation chemistry are mentioned in literature at all, then this is
done very reluctantly and mostly without any broader chemi-
cal contexts. With regard to the reasons mentioned, this present
paper offers a review of results of studies of initiation mecha-
nisms obtained on the bases of approaches of physical organic
chemistry to the problem given over the last seven years. These
results are demonstrated on nitramines, which in their molec-
ular structure are relatively simple polynitro compounds, and
the mechanism of primary homolysis of their molecules is well
understood [8–11].

2. Philosophy of approach

Recently, the relationships were found between outputs of
non-isothermal differential thermal analysis and characteristics
of detonation of polynitro arenes [12,13] and also nitramines,
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nitrosamines and nitric esters [13,17]. A more detailed analysis
of these results for polynitro arenes shows that their classification
in the sense of the relationships found is given primarily by
steric conditions and electron configuration in the ground state
of the reaction centre of the molecule [12,13] (see also classical
French studies from this area [14–16]). In this context, by the
reaction centre is meant the grouping of atoms and/or functional
groups in the molecule whose primary chemical changes initiate
decomposition of this molecule (see figures below, especially
Fig. 7). At the same time, the said facts represent one of the
basic principles of approach of organic chemistry to dealing
with reactivity problems in general.

The electron configuration and steric conditions within the
reaction centre of the molecule can be represented by NMR
chemical shifts of the key atoms of the centre. The shifts of these
atoms should correlate with characteristics of initiation reac-
tivity of individual energetic materials [1,18–22]. It is known
that the application of 15N NMR chemical shifts to the study of
chemical micro-mechanism of initiation of nitramines by heat
[1,18], impact [1,19], shock [1,20] or electric spark [1,21,22]
has given highly valuable results. It can be argued against this
approach that the NMR studies carried out in solutions neglect
important crystal-lattice effects that are vital in the determination
of explosive properties [23]. We pointed out this possibility as
early as in Ref. [24] using the particular case of 2,4,6,8,10,12-
hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (HNIW). From
s
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nitrogen atoms of primarily split off nitro group and thermal
reactivity of nitramines [25] is a logical supplementation of this
type of investigation.

Outputs from the above-mentioned studies are subsequently
compared with some findings of molecular dynamic approach
to problems of initiation [28–32] as well as with some results of
physics of solid-state application to this problem [33,34].

3. Results and discussion

3.1. Impact reactivity

We were engaged in study of impact sensitivity, defined as
the so-called “first reaction” (i.e. the first chemical change of the
sample is taken as positive result), in the past [19,35]. An analysis
of the relationship between the corresponding drop energies, Edr,
and 15N NMR chemical shifts of nitrogen atoms of nitramino
groups led to formulation of the relationship [19] documented in
Fig. 1. The correlation involves the chemical shifts, δA, of nitro-
gen aza-atoms (amino nitrogen atoms) carrying the nitro groups
that are leaving first during the initiation (i.e. the most reactive
nitro groups). From the point of view of electron structure and
close neighbourhood, the individual nitramino groups in polyni-
troamines are usually not equivalent to each other. Therefore,
also their abilities of participation in primary initiation processes
are different. This fact is documented by Fig. 1 and also by other
r
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everal papers [1,18–20] and the following text, it will be seen
hat this fact has no fundamental significance for studies of
hemical micro-mechanism of initiation of energetic materials.
lso, a study of direct relation between electronic charges at

ig. 1. Relationship between drop energy, Edr, of “the first reaction” and 15N N

roup in the nitramine molecule (in bracket given are the respective positions in mol
he data of TETROGEN, HNIW and TEX [1].
elationships listed hereinafter.
The aza (amino)-nitrogen chemical shifts, δA, in the

itramino groups are expected to be influenced by the nitrogen
ybridization, the size and conformation of molecule, and the

chemical shifts, δA, of aza-nitrogen atoms carrying the primarily leaving nitro

ecule, i.e. position of reaction centre); taken from Ref. [19], complemented by
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Fig. 2. Relationship between drop energy, Edr, of “the first reaction” and heat of fusion, �Hm,tr, of nitramines; taken from Ref. [19], completed by data of TEX [1].

extent to which the nitrogen lone pair is involved in �-bonding
with NO2 group. As the conformation and size of molecule
plays dominant role in the intermolecular interactions in the
corresponding crystal, the interactions should have a significant
influence on the impact sensitivity. This hypothesis is verified
by Fig. 2, which represents a relationship between the Edr val-
ues and heats of fusion, �Hm,tr, of nitramines [19]. The heat
of fusion is defined here as a sum of heats of all the poly-
morphous transitions and of the heat of melting. As the heat
represents the work needed for formation of defects in crys-
tal lattice, the relationships found seem to stand in accordance
with the ideas about the decisive role of plastic deformations
of crystal [36–38] and of dislocations in energetic crystals
[39,40] which they play in the initiation of energetic materials by
impact or shock (also the crack temperature can be mentioned
in this connection [41,42]). Here is a conjunction of approaches
of the physical organic chemistry and of the physics of solid
state.

3.2. Shock (detonation) reactivity

Paper [20] deals with the relationships between square of
detonation velocities, D2, or heats of explosion, Qreal, on the one
hand, and values of the 15N NMR chemical shifts of the nitrogen
atoms in nitramino groups, on the other. These relationships
for the D2 values are represented in Fig. 3. In contrast to the
f
v
s

3.3. Electric spark reactivity

Similarly, Fig. 4 represents the relation of the electric spark
sensitivity to electronic structure and steric conditions in the
reaction centre of nitramine molecules: here, the electric spark
energy, EES, correlates with the 15N NMR chemical shifts, δN, of
nitrogen atoms of the most reactive nitro groups [1,22]. The rela-
tionships in this diagram are similar to those between the square
of detonation velocity, D2, of nitramines and their δN values
in Fig. 3. The mechanism of primary fragmentation should be
identical in the two cases, even if there is no shock component
present in the electric discharge. Absence of this component was
justified on samples of 1,3,5-trinitro-1,3,5-triazinane (RDX) that
were contaminated with crushed glass (i.e. by “hot spots”): the
crushed glass markedly reduced electric spark sensitivity of the
resulting mixture [43]. The said effect can be interpreted [43]
on the basis of separation of RDX grains from each other by the
introduced glass particles (hot spots develop here at the thinnest
part of the individual solid under discharge, i.e. at contact micro-
points of grains of the identical kinds [44]). An analogous effect
of the introduced hot spots in lead azide was found by Stengach
[45].

3.4. Low-temperature thermolysis

15
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oregoing case, in this case such chemical shifts correlate whose
alues correspond to nitrogen atoms of nitro groups primarily
plit off during detonation [20].
The N NMR chemical shifts were used in analysis and
rediction of the Arrhenius parameters of low-temperature
ecomposition of nitramines [18]. Fig. 5 presents the rela-
ionship between the activation energies, Ea, of this decom-
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Fig. 3. Relationship between square of detonation velocity, D2, and 15N NMR chemical shifts, δN, of nitrogen atoms of the primarily leaving nitro groups (in
parenthesis given are the respective positions in molecule, i.e. position of reaction centre); repainted from Ref. [20].

position and the aforesaid chemical shifts, δN, of nitrogen
atoms in the most reactive nitro groups [18]. No analogous
relationship was found for the chemical shifts, δA, of aza-
nitrogen atoms in nitramino groups. The found dependences
of the type shown in Fig. 5 are discussed in detail elsewhere
[18].

As was already stated, the abilities of nitramine groupings
participation in primary initiation processes are different. This
fact is documented also by the electronic charges at nitrogen
atoms of the nitramines calculated on the basis of the Mul-
liken population analysis of electron densities, qN, obtained by
ab initio DFT B3LYP/6-31G** method [25]. The relationships

F ), and
n ositio
ig. 4. Relationship between spark energy, EES (i.e. sensitivity to electric spark
itro groups (in parenthesis given are the respective positions in molecule, i.e. p
15N NMR chemical shifts, δN, of nitro-nitrogen atoms of the primarily leaving
n of reaction centre) in nitramines; taken from Refs. [1,22].
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Fig. 5. Relationship between activation energy, Ea, of thermal decomposition under conditions of Russian manometric method and 15N NMR chemical shifts, δN,
of nitro-nitrogen of the primarily leaving nitro groups in the nitramine molecule (see Refs. [1,18]), complemented by the data of TNAZ (Ea = 153.5 kJ mol−1 taken
from Ref. [11]; δN = −20.5 ppm taken from Ref. [60]).

found between these charges at nitrogen atoms of primarily leav-
ing nitro groups and thermal reactivity of a set of nitramines
are documented in Fig. 6. The thermal reactivity is expressed
here as the slope (activation energy) EaR−1 in the Kissinger
relationship [46], which is used for evaluation of results of
non-isothermal differential thermal analysis. The logical rela-
tionships of Fig. 6 are discussed in Ref. [25] as follows: the
charge value at nitrogen atom of nitro group at 2 position in
the molecules of �-HNIW and �-HNIW correlates with both
the lines A and B. This nitro group primarily leaves on shock
initiation of HNIW [20] (see Fig. 3). The thermal decomposi-
tion of both polymorphous modifications of HNIW practically
proceeds only after their transition to �-HNIW [26]. The dif-
ference between mechanisms of these transitions of �-HNIW
and �-HNIW will probably cause a difference in arrangement
of defects in crystal lattice in particular (i.e. a difference in
intermolecular forces) in the resulting �-modifications [26]. The
different concentrations of crystal defects in the �-modifications
of HNIW, which have different histories, should make them-
selves felt in their different reactivity (in general).

If the N N bond length exceeds 141.0 pm, Arrhenius param-
eters of the given nitramine thermal decomposition in the solid
state correspond to those obtained from decomposition of this
kind of substances in the liquid state [27]. Therefore, the EaR−1

values of HNIW (thermal decomposition in the solid state) cor-
relate well with those of nitramines of the groups A and B
(
t
s

parts of the “caged” skeleton of HNIW globular molecule. Line
for group B is fulfilled by nitramine HOMO when using the
charge qN at nitrogen atom of nitro group at 1 position of its
molecule; this nitro group also primarily leaves after shock ini-
tiation of the said nitramine [1,20] (see Fig. 3).

The composition of group C nitramines (TEX, DNDC and
CPX) needs no comment. Within the group D nitramines, the
data of DMEDNA and ORDX correlate with those of �-HNIW.
The molecular skeletons of these two nitramines can be con-
sidered as fragments of the molecular skeleton of HNIW (e.g.
ORDX can be considered as an “open” HOMO molecule). The
nitramine ORDX correlates with the data of group D by its
qN value of nitrogen atom of nitro group at 4 position; this
nitro group also primarily leaves after shock initiation of ORDX
[20,47] (see Fig. 3). The similar mechanism was also confirmed
by molecular-dynamics simulation of action of shock and impact
on linear nitramines [47] (see below) and by already mentioned
analysis of action of these stimuli on linear and cyclic nitramines
by means of the 15N NMR chemical shifts (see Figs. 1, 3–5).
It must be stated that linear and cyclic nitramines represent one
group of chemical compounds but from the point of view of their
initiation reactivity they are two different groups (see below).

3.5. Inequality of nitramino groupings (and nitrogen atoms)

From what has been given so far it follows that the initiation
b
c
d

decomposition in the liquid state). From the point of view of
he group B composition it may be added that 1,3-imidazolidine
keleton of CPX and 1,3,5-triazepane skeleton of HOMO form
y impact should be dominated by the key role of the aza-atoms
arrying the primarily leaving nitro groups [1] (see Fig. 1). The
ominant factor in the initiation by shock, electric spark and
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Fig. 6. Relationship between the EaR−1 values and Mulliken B3LYP/6-31G** charges, qN, at the nitrogen atoms of the primarily split off nitro groups from nitramino
groupings in molecule (in parenthesis given are the respective positions in molecule, i.e. position of reaction centre); taken from Ref. [25].

in low-temperature thermolysis should be the electron structure
and close neighbourhood of the primarily leaving nitro group [1]
(see Figs. 3–6). For nitramine molecules, whose nitrogen atoms
are not isochronous, the said fact is documented in Fig. 7.

In the case of 2,4,6,8-tetranitro-2,4,6,8-tetraazanonane
(OHMX) molecule, the primary reactivity of “inner” nitramino
groups (positions 4 and 6) was confirmed by Kohno et al. [47]
using the molecular-dynamic simulation. His paper tends to
be quoted [3,5] without mentioning one of its important mer-
its, i.e. the selectivity in the initiation reactivity of nitramino
groups [47]: “in connection with action of impact or shock on a
nitramine crystal, the intramolecular vibration energy is trans-
ferred into nitramino groups. There is a difference between linear
and cyclic nitramines in transfer of the energy”. According to
Kohno et al. [47], the linear molecule OHMX shows only low

probability of transfer of surplus energy from the “inner” to
“outer” nitramino groups.

The longest N N bond in �-HNIW is that of nitramino group
at 2 position of its molecule [48] (143.6 pm [48], in opposite
to the single bond N N length which is of 142.5 pm [49]).
Therefore, this bond should be the first to undergo homolysis
in initiation processes. This statement is supported by the find-
ings presented in Figs. 1–4, 6 and 7.

3.6. Modified Evans–Polanyi–Semenov equation

Comparison of equations given in Figs. 3–6 leads to the rela-
tionship

E = aD2 + b (1)

F esente
m on [4
p st N
ig. 7. Summarization of the findings about the initiation reactivities can be pr
olecule in impact and shock was confirmed by molecular dynamics simulati

osition of its molecule and in HNIW molecule at position 2 (there is the longe
d as follows: (a) dominating reactivity of “inner” nitramino groups of OHMX
7]; (b) the most reactive nitramino group in HOMO molecule is that one at 1
N bond in molecule of its �-polymorph [48]).
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Fig. 8. Modified E–P–S equation for relationship between activation energies, Ea, of low-temperature thermolysis of nitramines (for cyclic nitramines in the solid
state) and real heat of explosion, Qreal (calculated according to the Pepekin’s semi-empirical method [59]); taken from Ref. [51].

and application of the definition relationship between det-
onation velocities and explosion heats Q [50] in the
form

Q = D2{2(γ2 − 1)}−1
(2)

where γ is the polytropy coefficient, transforms Eq. (1) into the
following form

E = αQ + β (3)

which is a modified Evans–Polanyi–Semenov (E–P–S) equa-
tion [51] for energetic materials. The original E–P–S describes
a relationship between activation energies E of most substi-
tution reactions of free radicals and corresponding heats of
reaction �H of the narrow sets of substance structures [52].
The equation documents that the strength of bond being split
is a decisive factor in the given reaction. A motive stimulus
for study of modified E–P–S relationship was the homolytic
character of primary fission in an initiation of both the detona-
tion and low-temperature thermal decompositions of energetic
materials [51] including explosive mixtures (see, e.g. Ref. [53]).
Fig. 8 was taken from Ref. [51] and documents this equation
for nitramines, whose activation energies, Ea, for cyclic deriva-
tives correspond to their thermal decomposition in the solid
state.

The validity of Eq. (3) was also successfully verified for the
t
[

for thermal decomposition within various temperature ranges.
In the sense of Eq. (3), however, the only Ea values correlate,
which correspond to the lowest experimental temperature ranges
[51,55].

We also made molecular-dynamic simulation of thermal
decomposition of some individual energetic materials, includ-
ing RDX, at extremely high temperatures [54]. It turned out
that the primary fragmentation mechanism at these condi-
tions is entirely different from the low-temperature variant.
In the case of the RDX unimolecular decomposition, it can
be mentioned that elimination of NO2 group by homolysis
of one N N bond is observed at all the reaction conditions
whereas triazinane ring fission (depolymerization to 1-nitro-1-
azaethylene, Digen) occurs predominantly in the gas phase ther-
mal decomposition of this nitramine, i.e. at higher temperatures
[58].

All the above-mentioned facts mean that the effect of tem-
perature (i.e. thermal decomposition) in classical sense has no
application in the process of detonation initiation by shock or
impact. Many recent papers dealt with this and related prob-
lems (for example, [5–7,28–34,57]). An idea about the initia-
tion of detonation which could be nearest to these facts is as
follows: excitation of crystal lattice vibration (phonons) after
receiving impact or shock [28–30] then be converted into bond
stretching frequencies (vibrons) with subsequent spontaneous
localization of vibrational energy in the nitro (explosophore)
g
i

hermal decomposition of inorganic azides [55] and fulminates
56]. For azides the literature gives activation energy values, Ea,
roupings [31,32]. Similar, but more detailed description of this
nitiation is presented by another idea about electronic excita-
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tions facilitated by edge dislocations in explosive solids which
was obtained from application of physics of the solid-state
aspect to the study of pre-explosion state of heavy metal azides
[33,34].

The correlation of activation energies of low-temperature
thermal decomposition (i.e. in the range up to 600 K) of
nitramines and other energetic materials (in general [1,51]) in
the sense of E–P–S equation thus means that the primary fis-
sion processes in this decomposition should be identical with
those in the detonation transformation of these polynitro com-
pounds [1]. The identity is confirmed by some striking pieces
of experimental evidence in the case of nitramines. First of all
they include the evidence (obtained with the help of Raman
spectroscopy and XPS) of primary fission of N–NO2 bond in
1,3,5-trinitro-1,3,5-triazinane exposed to shock wave [61,62].
It can be also likewise documented by experimental results
of Bulusu et al. [63] which, on the basis of kinetic isotope
effect, have found that the rate-determining steps in the pro-
cesses of thermal decomposition RDX and HMX and the chem-
ical process of their initiation are likely to be the same. The
above-mentioned statement also means that the detonation trans-
formation itself of the given substance should proceed at milder
conditions than those present at the front of detonation wave
or in its reaction zone and should have an induction period.
From the point of view of physics of explosion the neces-
sity of such induction period was also postulated by Dremin
[
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itself of the given substances should be preceded by an induc-
tion period [1,2].
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vation energies of low-temperature thermolysis and photolysis of some
fulminates with their heats of explosion, Thermochim. Acta 81 (1984)
359.

57] J.J. Gilman, Chemical reactions at detonation fronts in solids, Philos.
Mag. B 71 (1993) 1057.

58] D.V. Shalashilin, D.L. Thompson, Monte Carlo variational transition-
state theory study of the unimolecular dissociation of RDX, J. Phys.
Chem. A 101 (1997) 961.

59] V.I. Pepekin, M.N. Makhov, Yu.A. Lebedev, Teploty vzryvchatogo
razlozheniya individualnykh VV (Heats of explosive decomposition of
the individual explosives), Dokl. Akad. Nauk SSSR 232 (1977) 853.
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